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Abstract. A new concept of the basic invariants is Introduced. With the help o l the  basic 
invariants, new high-n squeezed states of the time-dependent harmonic oscillaloi are 
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has not been seen thus far in the literature. 
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The coherent states [ l ]  and squeezed states [2] of the harmonic oscillator have long 
been of interest for their remarkable properties. For the time-dependent harmonic 
oscillator (THO) with the Hamiltonian 

Hartley and Ray [3] constructed the coherent states by making use of the Lewis- 
Riesenfeld [4] quantum invariant theory. Recently, Pedrosa [ 5 ]  pointed out that these 
states are equivalent to the well known squeezed states which are also constructed by 
other authors [6,7] with the time-evolution operator technique. In this letter, we 
introduce a new concept of the basic invariants. With the help of the basic invariants, 
not only the above-stated squeezed states can readily be obtained, but some new high-n 
squeezed states, which may be applied to the study of the thermal distribution for the 
systems, can also be constructed. From the basic invariants, we also find a general 
form of invariant which has not been seen thus far in the literature. 

Lewis-Riesenfeld invariants can he used to study coherent states [3,8]. Now, we 
introduce a new concept of the basic invariants, which are different from Lewis- 
Riesenfeld invariants. From the definition of the invariant 

(2) dl( f)/df = Jl(f)/Jr -i[l(f), H ( l ) ]  = 0 

we can find the formal solution 

where U(f)  is the time-evolution operator for the system with Hamiltonian H ( r ) .  
Although, in general, the formal solution is not convenient for actual calculations, it 
can help us to introduce a new concept of the basic invariants. For a one-dimensional 
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system, there exist two basic invariants: q ( f ) =  U ( t ) q U t ( f )  and p ( f ) =  U ( r ) p U ' ( t )  or 
two arbitrary linearly-independent combinations of them. We want to point out two 
facts. 

(i) With / ( O ) = q  or p, two invariants q ( t ) =  U ( f ) q U ' ( t )  and p ( f ) =  U(r )pU' ( t )  
can be obtained by making use of equation (3). If 1 ,  and I ,  are both invariants, it is 
readily seen that /,/, and c , / , + c ~ / ~  (c, and c2 are time-independent constants) are all 
invariants. With this in mind, a general invariant (not necessarily Hermitian) I( f )  = 

in terms of the power series in 9 ( f )  and p( t )  as follows: 
L J ( ! ) ! ( c ! ) L J ~ ( : )  (!(e) - T ~ = = , ' T ~ = ~  cmnpm;." -i:h cmm beixg constant) CB:: he expressed 

/( t )  = U (  f )/(O) U ' ( t )  

It is in this sense that q ( t )  and p ( t )  are referred to as basic invariants. It is apparent 
that any two linearly-independent combinations of q ( r )  and p ( t )  can also be regarded 
as basic invariants. 

(ii) If l U r ( t ) ) ,  is a solution of the Schrodinger equation for the system, then 
l ( f ) lUr ( t ) )s  is also a solution. This fact may be used to obtain a series of solutions from 
one solution of the Schrodinger equation by making use of the basic invariants. It is 
worth emphasizing that the basic invariants cannot be found in the literature. For 
example, the 'general form' of the invariant for the displaced harmonic oscillator was 
discussed by Xin Ma [9]. However, his form is not really general, for it fails to contain 
our basic invariants. 

Since q, p and H constitute a quasi-algebra 

[9, HI = io2(t )p [P. HI = -iq ( 5 )  

it is not difficult to show that a general basic invariant for the system with Hamiltonian 
( I )  is of the form 

le( t )  = {x-'( t )  cos[ e( t ) +  eol+x( t )  sin[ e( t ) +  e& -{x( t )  sin[ e( t )  + e,])p (6)  

with S ( t ) = ~ ~ x - 2 ( f ' )  dl', where x ( t )  is a c-number solution of the auxiliary equation 

(7) 

and Bo is an initial phase angle. It is apparent that the initial conditions imposed on 
x, x can be arbitrarily chosen. With appropriate choices, two linearly-independent 
basic invariants can be obtained as follows: 

( 8 0 )  

(8b )  

i + w Y t ) x  = x-' 

/ b ( t )  = ( 1 / 2 ) " ~  exp[i8(t)]{x-'(r)q+i[x(t)p-x( t ) q ] }  
j + i , s - i ,  i ~ s l / 2 ~ ~ - r - ~ ~ i , ~ i l - - l , . ~ ~ ~ ~ r - , , ~ ~ ~ ~ / . ~ ~ i ~  
~ b t ~ l - t ~ l L l  ~"Vl~l"tLIJl* \ ' / Y - l l * ~ ~ l P  * t L I Y J I .  

with [ & ( f ) ,  /:(r)] =.1. It is worthwhile to note that the existence of the factor exp[iO(r)l 
in equation (8) guarantees the time-independent properties of the eigenvalues of & ( f )  
and reflects the fact that the basic invariants /,,(f). / L ( f )  are not Hermitian. In contrast, 
the invariants introduced thus far in the literature are all Hermitian (3 ,4 ,8 ,9) .  
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If at the initial time f = 0 the eigenstate of Ib(0) satisfies 

lh(o)I'P(o)) = tIw(0)) (9) 

it is easily shown that 

l h ( t ) l w ( t ) )  = tIw( 1 ) )  (10) 

D(z)S(r, @)aS'(r, @)D'(z ) l 'P( f ) )  = O  (11) 

U = ( ~ ~ , ) - ' / ~ ( ~ , , q + i p )  D(z)=exp[za'-z*a] (12) 

where 5 is a complex constant. With the expression for lb(l), equation (IO) becomes 

where 

s( r, @) = exp[$r ei*a2 -ar e-ima'2] ( 1 3 )  

with wo= 1 in the same units as w in equation ( I )  and 

cosh( r/2) exp(ia) = (x+x- l  -ix)/2 (14) 

+ = a - p  z=exp[-i(B+a)]t  cosh(r/2)-exp[i(B+/3)](* sinh(r/Z). (15) 

sinh( r / 2 )  exp(i6) = (x -x- '  - i x ) / Z  

Then, the state IT( t ) )  can be expressed as 

IWO) = ex~liS(OlD(z)S(r ,  +)lo) 
where 10) is the vacuum state of a'a and S is found to be 

(O/S'D'[id/df'- H(r')]DSIO) dt '  

=$ 10'{24 sinh2(r/2)-[(w2+ I )  cosh r - ( w 2 - l )  cos + sinh r])dt'. 

(17) 

From (IZ), (13) and (16), the squeezed states I'U(1)) for the system are obtained. 
Now, we discuss how the squeezing can be generated by tuning the oscillator 

frequency. To this end, we calculate the uncertainties ( A 9 ) 2 ,  ( A P ) ~  for the squeezed 
state in (16): 

(Aq)2=('4'(01q21WI)) -(('P(01d'W~)))2 = hx2/2 (180) 

( A P ) ~  = ('P(t)lp21'P(t)) - (('P(t)IplT( !))I2 = h ( ~ - ~ +  X2) /Z  (18b) 

(Aq)'(Ap)'= h2(1 +x2.i2)/4. (18c) 

In the adiabatic limit, from equation (7) we get 

x( I )  = [ w ( t ) ] - ' / 2  X ( t ) = O  ( 1 9 ~ )  

~ ~ ( t )  = [ 2 w ( ~ ) ] - " ~  exp(i~)(w(t)q+ip].  (196) 

From (18) and (19), it follows that the system will remain in the Glauber coherent 
state of mode w ( r )  if it is initially in the Glauber coherent state of mode w ( 0 )  in the 
adiabatic limit. This is to say that in the adiabatic cases it  is impossible to generate 
squeezing. In  order to generate squeezed states out of coherent states, it is necessary 
to have ai( f) # 0 which leads to x # 0. This conclusion is in agreement with that obtained 
in [7,10,11]. 
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We then proceed to construct the general form of the invariants by making use of 
the basic invariants &,(I )  and / : ( I ) .  The general form is 

where M, N are positive integers and A,. is a complex constant. It is worth pointing 
out that the Lewis-Riesenfeld invariant 

can be readily obtained from the general form (20). In [3], Hartley and Ray constructed 
the coherent states of the time-dependent harmonic oscillator in terms of the eigenstates 
of the Lewis-Riesenfeld invariant l c ( t ) .  Here, we see clearly that the coherent states 
of the time-dependent harmonic oscillator are nothing but the eigenstates of the basic 
invariant lh( t ) .  

Now, we turn to the discussion of new high-n squeezed states. Choosing appropriate 
coefficients A,,,", we obtain a special invariant 

From (16), (17) and (22), we can construct the high-n squeezed states 

I Y ~ =  r . ( t ) i w t ) )  

= exp[-in(O+ a)+i8]DS(at)"(n!)-"210) 

=exp{i[S - n ( O + a ) } D S l n )  (23) 

where In) is the eigenstate of a'a with eigenvalue n. In order to see the squeezing 
effect, we calculate the uncertainties ( A q ) ,  ( A p )  for / Y ( f ) )  in (23) 

(Aq)2 = ( n  + ; ) f i x 2  ( A P ) ~  = (n +$) f i (x -2+ x2) (24a) 

( A q ) 2 ( A p ) 2 =  (n+ t ) ' f i2 ( l  +x2x2). (24b) 

It is worth emphasizing that the high-n squeezed states constructed in this paper are 
the generalization of the high-n squeezed states of the harmonic oscillator with constant 
frequency in [12]. These generalized high-n squeezed states may be applied to the 
study of the thermal distribution [12] for the system. Work in this direction is under 
investigation. 

As a concluding remark we wish to point out that, for some system, q, p and the 
Hamiltonian H for the system may not constitute a quasi-algebra. In this case, if some 
other operators and H constitute a quasi-algebra, useful results can be obtained as 
well by means of the method employed in this paper. 
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